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ABSTRACT

Vitamin C, Ascorbic acid (AA) is an essential water-soluble
nutrient involved in many physiologic functions such as
energy metabolism, neurotransmitter synthesis, tissue repair,
immune function, and the regeneration and the recycling of
many molecules. The physiological need for this nutrient can
vary widely and is increased in the presence of physiological
stress such as trauma, infection, inflammation, increased
toxin load, chemotherapy, radiotherapy, and diseases such as
diabetes and cancer. It has been found that low plasma levels
of ascorbate often correlate with increased severity of disease
and symptoms. In addition, it has been reported that when
ascorbic acid is given at supraphysiologic levels, a variety of
pharmacologic effects can be observed. In-vitro and in-vivo
clinical research has allowed us to understand some of the
mechanisms involved and even correlate concentrations to
effect. Recent reports suggest that, even in high-income coun‐
tries like the United States, a considerable proportion of the
population have inadequate levels. Given the prevalence of
ascorbate insufficiency and its role in maintaining homeosta‐
sis and tissue repair, it is important to evaluate plasma levels
to properly assess the patient’s health. This assessment could
be useful to optimize outcomes by providing the nutritional
and pharmacologic benefits of AA as needed. We present a
guide to the interpretation of plasma ascorbate. This guide
includes seven levels with the corresponding descriptor,
intake levels, and plasma concentrations to facilitate clinical
decisions pertaining to intravenous Ascorbic Acid therapy.

Keywords: Vitamin C, ascorbic acid, ascorbate, plasma con‐
centration, therapeutic, deficient, insufficient

INTRODUCTION

Vitamin C, or Ascorbic acid (AA), is a nutritional factor in
food that serves as an important cofactor for essential
metabolic processes. Given in large quantities, AA has also
been evidenced to execute favorable pharmacological
activities in varied diseases.

AA is a neutral molecule with 6 carbon atoms, a ring struc‐
ture with 6 oxygen, and 8 hydrogens, some of them
forming hydroxyl groups with oxygen. When a hydrogen
ion is lost (removed) from the hydroxyl group, the mole‐
cule becomes negatively charged and is called ascorbate.
The ascorbates have a negatively charged anion associated
with a positively charged cation. The anion component of
the ascorbate donates electrons and is responsible for
most of the biological effects. The cation can also have bio‐
logical effects. Some of the ascorbate forms are sodium
ascorbate, calcium ascorbate, magnesium ascorbate,
potassium ascorbate, manganese ascorbate, and zinc
ascorbate (Figure 1).

AA can be ingested in the form of ascorbic acid ascorbate.
Regardless of the form received by the body, it will interact
with other molecules and membranes in a physiological
dance that will transform one form into another through
perpetual cycles of simple oxidation-reduction reactions
(RedOx) or complex conformational changes in DNA
(Yoshikawa et al., 2003). This AA molecule’s versatility is
important for the process of photosynthesis and mito‐
chondrial ATP production (Gonzalez et al., 2010).
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Research has demonstrated that AA is exceptionally safe in
humans at very high doses and has relevant pharmacolog‐
ical and physiological pleiotropic effects (Padayatty et al.,
2010; Magrì et al., 2020; Luchtel et al., 2020; Guo et al., 2022;
Lee et al., 2019; Ried et al., 2016; Vollbracht et al., 2018;
Emadi et al., 2019; Doseděl et al., 2021; Carr and Maggini
2017). These effects explain its wide array of clinical uses
that improve patient outcomes in burns (McGregor &
Biesalski, 2006), infections (Schencking et al., 2012; Chen et
al., 2019; Gonzalez et al., 2018; Marcial-Vega et al., 2017;
Mikirova et al., 2014), sepsis, and many other conditions
(Holford et al., 2018; Fowler et al., 2019; Mahmoodpoor,
2021; Schencking et al., 2012). Despite its proven impor‐
tance in physiological and pharmacological processes,
most clinical curriculums fail to teach the importance of
assessing ascorbate sufficiency (Mandl et al., 2009).

AA is a cofactor in hydroxylation reactions in the formation
of various neurotransmitters, hormones, and in collagen
stabilization, the protein that comprises 30% of human cel‐
lular protein mass (Ballaz et al., 2019; Gallie et al., 2013;
Pandipati et al., 1998; Kishimoto et al., 2013). Ascorbate is
also fundamental in RedOx homeostasis in the mitochon‐
dria and endoplasmic reticulum (Boel et al., 2019; Pozzer et
al., 2021; Singh-Mallah et al.,. 2019). The RedOx potential of
AA has a central role in the regeneration of vitamins within
the body, such as alpha-tocopherol (Niki, 1987) and
ubiquinone (Beyer, 1994). In addition, AA also Is involved in
epigenetic regulation of genomic stability and has modu‐
latory effects on nucleic acids and histones with
implications for carcinogenesis and other relevant biologi‐
cal processes (Young, 2015, Brabson et al., 2021).

This article will discuss the physiological effects and
response of the human body to a spectrum of concentra‐
tions of AA ranging from pathologically low to
pharmacologically high and proposes a novel guide to its
interpretation.

PHYSIOLOGIC ASCORBIC ACID

The HumanMetabolic Disadvantage in Ascorbic Acid
Synthesis

Contrary to humans, a vast majority of vertebrates can syn‐
thesize AA in accordance with physiologic demands.
Typically, they convert D-glucose to AA through a bio‐
chemical pathway mediated by the enzyme l-gulono-g-
lactone oxidase (GLO), which catalyzes the last step of AA
biosynthesis.When sufficient AA is present, it helps control
excess inflammation, support leukocyte function, inhibit
microbial pathogen growth and neutralize harmful reac‐
tive oxygen species (ROS). However, humans lack a
functional gene and, therefore, the GLO enzyme (Nishikimi
et al., 1991). Homo sapiens are not able to synthesize AA
and acquire the necessary amounts of this molecule by
administering nutritional or pharmacologic doses, accord‐
ing to the current physiological demands.

AA Absorption and Plasma Concentrations in Health
and Disease

In its reduced form, AA has a high electron-donating
potential. Once oxidized to dehydroascorbic (DHAA) acid it
may be converted back to the active reduced form. This
gives the molecule the capacity to neutralize excess dam‐
aging reactive oxygen species and serve to provide stores/
transports of the cell metabolic antioxidant potential
(Cite). AA concentrations in body fluids and tissues are
largely regulated through absorption, tissue accumula‐
tion, utilization, and renal reabsorption.

Inter-individual differences in genetics, metabolism, physi‐
ology, absorption, activity level, and body size affect the
optimal amount of AA needed to maintain health. An indi‐
vidual’s AA needs may also vary depending on the
conditions that create an intense change in physiology
such as (Long et al., 2003), infection (Tanzer, 1993; Li et al.,
2006), as well as exposure to certain substances, all of
which create excess oxidative stress, inflammation, and
other increased metabolic demands. The utilization of AA
increases during stress-inducing experiences, such as
surgery Fukushima & Yamazaki, 2010), diabetes (Pecoraro
& Chen, 1987), critically ill (Berger, 2015) patients after
severe burns (McGregor & Biesalski, 2006), exposure to
tobacco (Preston, 2006), and cancer (Mayland, 2005).

PHARMACOKINETICS OF ASCORBIC ACID

Absorption and Distribution

The absorption of AA is dose-dependent. Low, single oral
doses of 30–180 mg/day are approximately 70-90%
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Figure 1. Ascorbic acid (AA), sodium ascorbate and
magnesium ascorbate

http://www.chemspider.com/Chemical-Structure.12283687.html
http://www.chemspider.com/Chemical-Structure.16736174.html
http://www.chemspider.com/Chemical-Structure.17339241.html
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absorbed. As single oral doses approach 1 g/day and
higher, absorption falls to less than 50% and unmetabo‐
lized AA is excreted in the urine (Jacob, 2002).

The absorption of reduced AA or dehydroascorbic acid
(DHAA oxidized form) in the intestinal membrane can
occur via a family of sodium-dependent AA active trans‐
porters (SVCT) or through facilitated diffusion via Glucose
(hexose) transporters (GLUT1 or GLUT3 transporters),
respectively (Lykkesfeldt, 2019). The pH level in the intes‐
tine is also a regulatory mechanism of AA absorption
(Sobala, 1989). The pharmacokinetics of AA is highly regu‐
lated by the transporters SVCT. Because there tSVCT1 is
responsible for in whole-body dynamics of AA, while
SVCT2 activity provides protection against oxidative stress
in metabolically active cells (Savini 2008). There are many
types of SVCTs distributed in the body and these can be
tissue-specific. Therefore, the metabolic activity of cells
and the density membrane transporters in a tissue facili‐
tate the accumulation and storage of AA in tissues
depending on primary need or susceptibility to depletion.
This means that the distribution pattern of AA differs
between and within organs and tissues. For example, the
normal concentration of AA can vary from 0.2 mM in the
muscle and heart, and up to 10 mM in the brain and
adrenal gland (Lykkesfeldt &Tveden-Nyborg, 2019).

In lower physiological concentrations, AA time concentra‐
tion curve follows a linear dose-dependent or constant
(zero-order) behavior.However, at higher pharmacological
concentrations it follows first-order pharmacokinetics,
which means that at higher concentrations, the higher the
clearance. Thus, the aggregate half-life of AA at pharmaco‐
logic concentration is about 2 hours after infusions 50
grams and higher and volume of distribution 0.19 L/kg
(Padayatty, 2004).

This was observed in studies in patients with advanced can‐
cers using 60 grams of intravenous (IV) AA (Nielsen, 2015;
Stephenson, 2013). In a recent study in critically ill patients
with septic shock, using 1.5 gm IV every 6 hours, AA volume
of distribution was 23.3 L, and the half-life 4.3 h (Hudson,
2019). Although in these studies the authors have reported
biological half-lives of AA that ranged from 2-4.3 hours/
This is likely an aggregate effect of tissue AA redistribution.
Therefore, the actual elimination half-life of AA seems to be
shorter (approximately 30 minutes) following a rapid IV
administration, as can be seen in Figure 2 of the publication
discussing AA Pharmacokinetics and its implications for
oral and intravenous use (Padayatty et al., 2004)

Metabolism

AA takes part in a myriad of physiological reactions as a
cofactor or as an electron donor. The reduced form AA
donates two electrons to produce the oxidized form (DHA)
serving its antioxidant function.

AA itself is oxidized to an intermediate, ascorbyl free radi‐
cal, which at the systemic can convert to AA and DHA.
DHA’s biological half-life is a few minutes brief (Bode, 1990)
because it is efficiently reduced intracellularly by a variety
of cell types. DHA is generally reduced back to AA by enzy‐
matic means, an efficient intracellular process in healthy
individuals. However, smoking and disease states increase
the turnover of AA requiring more intake to meet physio‐
logic demands (cite).

Turnover of AA is associated with the catabolism of DHA,
starting with hydrolysis through a series of enzymes with
products entering the pentose phosphate pathway for fur‐
ther degradation (Banhegyi, 1997).

Excretion

AA is quickly eliminated through glomerular filtration with
no significant reuptake. Following an intravenous high-
dose AA, a biological half-life of about 2 hours has been
reported (Padayatty, 2004). However, based on prior data
from Levine and Padayatti, the actual elimination half-life
of AA could be shorter than that (approximately 30 min‐
utes) following a rapid IV administration (add citation date)
[Padayatty, 2004]. The apparent discrepancy appears to
come from the fact that biological half-live estimations do
not rid of the impact that some concomitant events (e.g.,
distribution delays, lag time) have on drug disposition
kinetics as the method to estimate the elimination half-life
does (Nerella, 1993).

Therefore, it is expected that after achieving millimolar
plasma concentrations by intravenous infusion, blood
plasma levels are normalized to physiological levels in
approximately 16 hours. However, disease states may alter
excretion dynamics. Animal data support the hypothesis
that tumor tissues maintain an elevated level for as much
as 48 h (Campbell, 2016). This could be caused by
increased tissue uptake related to metabolic use and
increased tumor GLUT expression (cite) [Blaszczak et al
2019]. Increased tumor ascorbate was associated with
slowed tumor growth, reduced tumor microvessel density,
and decreased hypoxia. The hypoxic tumor environment
does not appear to causally affect AA concentration.
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Genetic Polymorphisms

Genetic polymorphism refers to allelic variations which
alter the DNA sequence at a given locus. This variation can
result in changes in proteins that may have functional or
structural implications, such as the reduced affinity of an
enzyme for its cofactor (Ames, 2004).

SVCT (sodium-dependent vitamin C transporters) are
involved in the tissue distribution of AA. Thus, SVCT vari‐
ants can result in reduced AA saturation in a specific tissue
(Michels, 2013). Additionally, genetic variants of proteins
can suppress oxidative stress or detoxify damaged
biomolecules. The antioxidant enzyme glutathione peroxi‐
dase (GPx1) has an important role in determining the
oxidative stress of individuals. It has been found that indi‐
viduals with a less active genetic variant (GPx1 rs1800668
genotype) produce significantly less total glutathione,
reduced/oxidized glutathione, and ubiquinone when com‐
pared to healthy individuals (Gugliandolo et al. 2016).
Patients with more active glutathione or taking glu‐
tathione supplements will reduce oxidative stress; those
that have a less active variant or are exposed to chemicals
that produce oxidative stress. These effects have an impact
on AA use and therefore its concentration level in the
human body. The higher the level of reducing agents the
lower the oxidative stress and therefore the lower the con‐
sumption of AA in redox functions.

Genetic variants in HP (Human plasma haptoglobin) GST,
(glutathione-s-transferase) and SOD2 (superoxide dismu‐
tase) have known roles in oxidative stress (cite) (Sitar et al.
2013, Levy et al. 2010, Pintér et al. 2017, Manivasagam et al.
2020). Single nucleotide polymorphisms in each of these
genes were found to be related to AA status. This suggests
that genetic variations of other antioxidant-related genes
could alter AA by utilizing less AA in redox activity. In sum‐
mary, here is an indication that genetic alterations, in the
form of single-nucleotide polymorphisms, gene duplica‐
tions, or gene deletions, alter AA levels in the human body
(Michels, 2013).

Epigenetic reprogramming in cancer cells involves DNA
hypermethylation and histone modification (Yun, 2012). It
has been found that TET (Ten-eleven Translocase) proteins
can be activated by the AA as a cofactor. TET proteins are
enzymes that can demethylate DNA. Neomorphic muta‐
tions of Isocitrate dehydrogenase expression can produce
reduced TET activity increasing DNA methylation and pro‐
moting the expression of tumor-associated genes (Lu et al.,
2012). In some lymphomas, AA enhanced mutated TET
activity, leading to DNA demethylation, increased expres‐
sion of tumor suppressor genes, and chemosensitivity
(Shenoy, 2017).

Emerging evidence has suggested that the epigenetic
mechanisms by which AA may enhance gene reprogram‐
ming in somatic cells are due to its cofactor role in Fe (II)
and 2-oxoglutarate-dependent dioxygenases, including
the TET and histone demethylases (Kuiper et al., 2014).
Recently, Liu et al. examined the available evidence con‐
cerning the postulated role of AA in DNA and histone
demethylation and highlighted its potential involvement
in regulating N6-methyladenosine demethylation (2021).
Liu et al. also indicated an affiliation of demethylases with
AA-facilitated epigenetic reprogramming and a contribu‐
tion of AA to epigenetic regulation (2021).

Prior studies have also shown that AA administered at high
intravenous doses can suppress cancer cell growth
through epigenetic mechanisms, namely DNA demethyla‐
tion (Mastrangelo et al., 2018). Steers et al. have proposed
that the co-administration of high IV-AA doses and DNA
methyltransferase inhibitors may offer a therapeutic
advantage in the treatment of pancreatic cancer through
both direct cytotoxic mechanisms and epigenetic alter‐
ations (2021).

TOXINS AND DISEASE

Toxins, injury and disease create oxidative stress in various
tissues, subsequently increasing AA body utilization and
depletion if AA consumption is inadequate.

Tobacco smoke is a toxic substance consumed by humans
that significantly impact AA dynamics Research has
demonstrated that active smoking typically diminishes AA
plasma by 25–50% (Lykkesfeldt, 2006), while passive
tobacco smoke exposure reduces plasma AA concentra‐
tions by approximately 12-25% (Preston, 2006).

It has been proposed that critically ill patients can tolerate
higher/ supratherapeutic doses of orally ingested AA with‐
out experiencing significant gastrointestinal upset. This
method was coined“titrating to bowel tolerance”. Cathcart
reported that at least 80% of adult patients will tolerate 10
to 15 grams of AA per day without having diarrhea when
AA was dissolved in water and given in divided doses
(1981). The absorbed dose is proportional to the severity of
the illness with intakes over 100 grams being tolerated. In
the case of very toxic diseases, doses may have to be taken
every half hour. Short delays in taking these doses may
prolong the disease (Cathcart, 1981).

Absorption and distribution of AA into the diseased tissues
occur at an accelerated rate, presumably because of
increased AA metabolism. More specifically, it is a change
in signaling and controls that open up transport channels.
Therefore, to supply the metabolic demand, this frequent
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dosing provides an adequate amount at an adequate rate
(Cathcart 1981). Some conditions known to be associated
with low levels of AA include cancer (Mayland 2005; Fritz et
al., 2014), and viral illnesses (Tomasa-Irriguible & Bielsa-
Berrocal, 2021), sepsis (Marik, 2018), and diabetes (Ali et al.,
1989). Previously, a study had demonstrated that plasma
total AA was significantly lower in individuals with dia‐
betes compared to age and sex-match controls (N=100). In
addition, in patients with diabetes and diabetic retinopa‐
thy, the plasma total AA was significantly lower than that of
uncomplicated diabetics (Ali et al., 1989). Another con‐
trolled study showed that low AA levels in diabetes appear
to be a consequence of the disease itself and not due to
inadequate dietary intake of AA (Sinclair, 1994). Further‐
more, the presence of complications seems to be an
important prognostic factor in AA depletion. For example,
diabetic patients with microangiopathy have lower levels
of AA than age-matched diabetics without microangiopa‐
thy (Sinclair, 1991).

CANCER, INFLAMMATION, AND BACTERIAL/VIRAL
INFECTION

A study of 50 patients recruited from a large hospice with
advanced cancer from different types (i.e., brain, breast,
bronchial, urogenital, gastrointestinal, prostate, etc.) found
that 30% of individuals were deficient (<11 μM) and 42%
were low (11.1 -23 μM) in plasma AA. Additionally, low
plasma AA was found to be significantly associated with
low albumin, low PLT, high CRP, and shorter survival (May‐
land,2005).

AA at high doses (7,500 and over mg/day), especially when
producing high micromolar or millimolar concentrations
has been shown to exhibit anticancer (antineoplastic),
anti-inflammatory, antioxidant, immunomodulatory, and
antiviral effects among others (Levine et al., 2011; Sun et
al., 2019; Nakajima et al., 2019; Cheng et al., 2012; Kim et al.,
2013; Sorice et al., 2014; Feigen et al., 1982). There are many
documented anticancer mechanisms described for AA,
most notably, the preferential promotion of hydrogen per‐
oxide and oxidative stress in cancer cells, AA-mediated
downregulation of HIF transcriptional activity, and AA-reg‐
ulation of epigenetic changes such as DNA demethylation.
This DNA methylation process is facilitated by the ten-
eleven translocation enzyme activation which results in
the re-expression of tumor suppressor genes in cancer
cells (Vissers & Das, 2018).

Intravenous AA at doses of 7.5-50 g can reduce inflamma‐
tion by as much as 44%, as measured by C-reactive protein
or CRP (Mikirova et al., 2012). Several studies describe the
various mechanisms by which AA enhances the function of

leukocytes. These include chemokinesis and chemotaxis
(Schwager et al., 2015), phagocytosis (Shilotri, 1977), the
production of lysosomal enzymes (Anderson 1982), the
generation of reactive oxygen species (Sharma et al.,
2004), microbial killing (Vilchèze et al., 2018), up-regula‐
tion of the antibody response (Mitsuzumi et al., 1998), and
increased interferon production (Stone, 1980).

In addition, studies have shown many clinical benefits,
including lowering infection risk (Vorilhon et al., 2019; Kim
et al., 2018). Studies in septic mice suggest that an rate in
septic mice occurs by activating Nrf2/HO-1 signals (Kim et
al., 2015).

In-vitro observations with pharmacologic concentrations
of AA (millimolar range) suggest a direct antiviral effect
(Furuya et al., 2008; Shatzer et al., 2013), consistent with
clinical observations of patients with Epstein-Barr viral
(EBV) infection (cite). Moreover, intravenous AA has
demonstrated clinical benefits against different viral infec‐
tions, including SARS-Cov-2 (Schencking et al., 2012; Chen
et al., 2019; Gonzalez et al., 2018; Marcial-Vega et al., 2017).

The use of AA as an effective antiviral has been docu‐
mented as early as 1949 when Frederick R. Klenner
reported the ability of AA to potentially cure many differ‐
ent acute infectious diseases and to neutralize toxins
(Klenner, 1949; Klenner 1971). The caveat was that the AA
needs to be provided in sufficient doses, repeated at short
intervals, and continued for a long enough period. Klenner
claimed that AA is a powerful oxidizer and when given in
massive amounts such as 50 grams to 150 grams, intra‐
venously (Klenner, 1971). Klenner’s report detailed that
supratherapeutic doses (1000 -2000 mg) of AA, adminis‐
tered orally or intramuscularly led to the resolution of
poliomyelitis in 60/60 (100%) patients (Klenner 1949). He
also reported the cure of advanced polio and its associated
flaccid paralysis with AA in 1951. Other clinicians sup‐
ported Klenner’s reports of AA’s therapeutic effect on polio
(Greer, 1955; Baur, 1952).

These results are consistent with previous in-vitro and in-
vivo research that has shown that AA inactivates polio,
herpes, vaccinia (Kligler, 1937; Turner, 1964), tobacco
mosaic (Lojkin, 1936), bacteriophage (Lominski,1936;
Murata, 1975; Morgan, 1976; Richter, 1982), enteroviruses
(Salo, 1978), influenza (Cheng, 2012; Chen, 2014), and
rabies (Amato, 1937) viruses.

Intravenous AA administration has been successfully used
(complete clinical recovery) in the treatment of viral
encephalitis (Klenner, 1949; Klenner, 1951, Klenner 1953;
Klenner, 1971), viral pneumonia and bronchitis (Dalton
1962), measles (Joffe, 1983), mumps (Karam, 1953), Herpes
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(Zureick, 1950), influenza (Cai, 2015) and rabies in guinea
pigs (Banic,1975). Human case reports have also sup‐
ported that the intravenous administration of AA is useful
in the treatment of influenza (Vilchèze et al., 2018)
mononucleosis (Mikir ova, 2014), chikungunya (Marcial-
Vega, 2015, Adrover, 2015), Zika (Gonzalez, 2016), and
SARS COV-2 (Gonzalez, 2020).

INTRAVENOUS ADMINISTRATION

Klenner’s extensive work with intravenous AA infusions in
1949 significantly influenced the development of the Rior‐
dan Clinic, founded in 1975 (under the nameThe Center for
the Improvement of Human Functioning). By 2015, Rior‐
dan Clinic had delivered over 70,000 infusions (in a period
of 40 years) with a low frequency of mild to moderate, and
usually transient, side effects (Riordan Clinic, 2015). This is
consistent with the study of FDA’s Adverse Events Data‐
base and a survey of 172 practitioners who administered
IV-AA to 11,233 patients in 2006 and 8,876 patients in
2008. The average dose was 28 grams every 4 days, with 22
total treatments per patient. Adverse events were reported
in 101 patients, including lethargy/fatigue in 59 patients,
change in mental status in 21 patients, and vein irritation
or phlebitis in 6 patients (Padayatty et al., 2010).

High-dose intravenous AA (HDIVAA) has been used as ther‐
apy for a variety of conditions ranging from infectious
diseases of bacterial and viral origin to adjuvant therapy
for cancer, and many others. A clinical protocol developed
over the past several decades utilizing HDIVAA summa‐
rizes principles of treatment, rationale, baseline workup,
infusion protocol, precautions, and side effects (Riordan et
al., 2003).

Precautions

Renal function and hydration – A prospective study of 157
patients receiving intravenous vitamin c supplementation
(IVC) determined that IVC was not clearly associated with
patient-reported renal stones (Prier et al 2018). Adequate
renal function, hydration, and urine voiding capacity must
be documented prior to starting high-dose IVC therapy.
Calcium oxalate stones during or following IVC are rare
(Riordan et al., 2005). In a later study conducted in a group
of 16 healthy individuals with normal renal function, intra‐
venous doses ranging from 0.2 to 1.5 g/kg body weight
less

G6PD – Hemolysis has been reported in patients with glu‐
cose-6-phosphate-dehydrogenase (G6PD) deficiency
when given a high dose of intravenous AA (Campbell et al.,
1975). Therefore, an assessment of the G6PD level is neces‐
sary before beginning IVC.

Transient electrolyte disturbance – Due to the chelating
effect of IVC, some patients may complain of shakiness due
to low calcium or magnesium. An additional 1.0 mL of
MgCl added to the IVC solution will usually resolve this. If
severe, it can be treated with an IV push of 10 mL of cal‐
cium gluconate, 1.0 mL per minute (Riordan et al., 2003).

Venous irritation – IV irritation may occur at the infusion
site. This can be caused by an infusion rate exceeding 1.0
gram/minute. The protocol suggests adding magnesium
to reduce the incidence of vein irritation and spasm (cite)
(Riordan et al. 2003).

Osmolarity and pH – To facilitate comfortable infusion, in
addition to infusion rate and other additives previously
mentioned, osmolarity and pH are important factors.
Osmolarity refers to the concentration of the solute or the
number of solute particles per 1 L of solvent. The pH is the
concentration of hydrogen ions, H+, in a solution. Human
studies of osmolarity-induced phlebitis have arrived at
different conclusions, but the most often cited reference
found the lowest risk of phlebitis occurred with solution
osmolarities under 450 mOsm/L, moderate risk at 450 to
600 mOsm/L, and the highest risk over 600 mOsm/L (Gazi‐
tua et al 1979). Human trials measuring the impact of pH
on peripheral veins found that neutralizing the pH to 7 –
7.4 significantly reduced the incidence of phlebitis (Eremin
&Marshall 1977; Fujita et al 2000)

Table 1 lists the calculated osmolality of various amounts
of fluid volume. Our experience has found that osmolality
of less than 1200 mOsm/kg H2O is tolerated by most
patients. A low infusion rate (0.5 grams IVC per minute)
also reduces the tonicity, although up to 1.0 grams per
minute can be used in order to achieve higher post IVC sat‐
uration levels. (Pre and post serum osmolality
measurements are advisable at this dose as per the Rior‐
dan Protocol (Riordan et al. 2003).

Table 1. Recommended Dilution and Osmolarity

AA grams per volume
in the vial at 500

mg/mL

Recommended
Dilution Dilute

Osmolarity
mOsm/L

15 gm > 30 mL 250 mL Ringers 909

25 gm > 50 mL 5000 mL Ringers 7959

50 gm > 100 mL 500 mL H2O 1097

75 gm > 150 mL 750 mL H2O 1088

100 gm > 200 mL 1000 mL H2O 1085
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THE NEED FOR NEW GUIDELINES

Since humans cannot synthesize AA, they are dependent
on dietary intake and or supplementation. Contrary to
expectations, vitamin insufficiency is common even in
high-income countries. Since AA demands increase during
stress, it is often depleted in patients with varied condi‐
tions, Understanding AA plasma concentration could be a
useful tool for patient assessment and monitoring. The
amount of AA needed to prevent acute scurvy is small and
believed to be obtained in Western diets. However, the
United States: 2003-2004 National Health and Nutrition
Examination Survey (NHANES), indicated that the preva‐
lence of low plasma AA concentrations (insufficiency) is as
high as 22% to 33%, with 7% to 14% of people showing
scorbutogenic deficiency (Schleicher, 2009; Cahill, 2009).
However, data from subsequent National Health and Nutri‐
tion Examination Survey (NHANES) 2005-2016, revealed an
increased prevalence of insufficient AA (inadequate) intake
of 46% (Carroll, 2020). Studies in India, Malaysia, and China
demonstrate similar or higher deficiencies of AA(Hughes,
1999). In Mexico,23% of children and 39% of women
present with vitamin C deficiency (Villalpando, 2003). More
recently, AA insufficiency among healthy people in the
USA was reported to be 45% (Reider et al, 2020). Given
these statistics, it may be presumed that the vast majority
of people with certain risk factors or patients with acute or
chronic conditions are depleted of this vitamin, which
makes them more vulnerable to slow recovery or subopti‐
mal clinical outcomes.

INGESTION, DOSING, AND PLASMA CONCENTRATIONS

Scurvy

Scurvy has been defined as a collection of symptoms
related to deficient AA in the body (anemia, myalgia,
edema, petechiae, gingivitis, poor wound healing, and
others). These symptoms are associated with plasma AA
levels below 1.5 mg/L (0.0085 mM/L, 8.5 µM/L) (Hage 2018)
or below 1.9 mg/L [0.011 mM (11 µM/L)] [The unit formats
µM µmol/L etc are varying I suggest µM/L for consistency]
(Nyyssönen 1997; Food and Nutrition Board, 2000).

Marginal Hypovitaminosis

Marginal hypovitaminosis or low plasma levels is a state of
minimal reserves which can lead to scurvy. Hypovita‐
minosis is characterized by AA concentrations below 23
µM/L (Smith, 1987; Carr, 2016; Carr, 2016; Jacob, 2002). It is
assumed that adequate AA levels depending on the crite‐
ria, is likely anything above 23 µmol/L. More generously, as
recommended by a group of European Countries, about

50 µM/L can potentially compensate for some normal
metabolic losses (Krajcovicova-Kudlackova, 2007;
Brubacher, 2000, EFSA NDA Panel, 2000). Consumption of
5-to 9 servings of fruits and vegetables daily or a 200 mg
AA supplement has been estimated to produce near
steady-state AA plasma concentrations of 70-80 μmol/L
(Levine, 1996).

Oral Ingestion

Vigorous oral ingestion results in peak values that report‐
edly do not exceed 220 μmol/L in healthy volunteers
(Padayatty, 2004). The dynamic flow model proposes
restoring human physiology to nearly that of animals that
synthesize their own AA. The mean and minimum plasma
levels in dynamic flow are consistent levels of about 220
μM (Hickey, 2005).

Intravenous

Only when AA is given intravenously in multi-gram doses
can a supraphysiological (millimolar) concentration can be
achieved. A supraphysiological concentration of AA has
been reported to have important pharmacologic proper‐
ties and a significant impact on patient outcome
(González, 2002; Verrax, 2009; Riordan, 2004; Chen, 2005;
Takahashi, 2012; Raymond, 2016; Ma, 2014). Doses around
1.5 mg/Kg and up to 100 gm of intravenous AA have been
shown to produce concentrations between 25-30 mM/L
(Hoffer et al., 2008; Monti, 2012).

A NEW OPTIMAL CONCENTRATION AND DOSING
SCHEME

Nearly 20 years ago, a previous guide for interpretation of
plasma AA interpretation by Jacob and Sotoudeh (2002)
proposed 3 levels: adequate (>23 µM), low (23 – 11.4 µM),
and deficient (<11.4 µM) (2002). Levine et al. (1996) sug‐
gest 70-80 microM/L as a safe level when making dietary
allowance recommendations. Despite being valuable, this
guideline omits concentrations achieved when patients
are receiving a clinically relevant range of oral doses and
intravenous doses of AA. In our proposed table we include
two levels of oral supplementation and two levels of intra‐
venous dosing to serve as a guide for clinical decisions.
This guide includes some physiological or pharmacologi‐
cal effects, dosing, and range in concentrations in both
mg/L and µM units. However, chronic conditions such as
cancer and diabetes, toxins, and trauma can be an impor‐
tant and dynamic source of AA turnover.

At this time, there is insufficient evidence to determine the
optimal concentration and dosing regimen for each condi‐
tion. A patient with a serious infection, cancer, or trauma
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might need different frequencies and the optimal concen‐
tration might vary according to severity, comorbidities,
and other factors. In the case of cancer, it is thought that
effective distribution of AA is necessary throughout the
tumor environment. (Vissers & Das, 2018).

A dosing regimen that is smaller in magnitude and more
frequent will produce less fluctuation in AA plasma con‐
centration but may be more difficult to achieve than single
high dose administration. For the most severe cases, the
preponderance of the data so far supports that robust
intravenous doses are necessary to produce the best
results.

Table References
1. Lykkesfeldt et al. 2010,
2. Food and Nutrition Board, 2000.
3. Hagel et al. 2018
4. Nyyssönen 1997.
5. Smith 1987.
6. Jacob 2002.
7. Carr 2016.
8. Krajcovicova-Kudlackova et al. 2007.
9. Brubacher 2000.

10. EFSA, NDA Panel. 2013.
11. Levine et al. 1996.
12. Padayatty et al. 2004.
13. Cathcart 1981.
14. Verrax J 2009.
15. Riordan et al. 2004
16. Tahahashi et al. 2012
17. Ma 2014.
18. Raymond 2016

ACHIEVING ORAL HIGH SUPPLEMENTATION LEVELS

AA is available in liposomal formulation for oral consump‐
tion. Liposomes are a pharmaceutical delivery system
consisting of microscopic sphere-shaped vesicles com‐
posed of phospholipid bilayers that encapsulate the active
ingredient inside. The liposome can differ in particle size,
composition, and charge, and drug carrier loaded with a
variety of molecules and it is used for the purpose of pro‐
tecting a compound from gastrointestinal degradation,
reducing gastrointestinal adverse effects of the drug,
and/or enhancing its absorption into the systemic circula‐
tion.

A bioavailability study conducted in the USA indicated that
oral delivery of 4 g of AA encapsulated in liposomes pro‐
duces circulating concentrations of AA that are 35%
greater (AUC 0-4 h) than unencapsulated oral supplements
and provides a similar level of protection from ischemia-
reperfusion-mediated oxidative stress compared to unen‐
capsulated oral and intravenous administrations (Davis et
al., 2016). A different liposome increased half-life by 50%
and elevated AUC 80%, and further evaluation of MTT tests
in MCF7 cancer cell cultures demonstrated potency on the
cellular level (Łukawski et al., 2020). Another clinical study
of liposomal AA was demonstrated to be 1.77 times more
bioavailable than non-liposomal AA (Gopi &Balakrishnan,
2020).

In summary, oral liposomes provide an enhanced bioavail‐
ability while improving tolerance. Presumably, the tissue
distribution should be different because it may not entirely
depend on the same transport mechanisms (glut, SVCT).
These pharmacokinetic differences in distribution may
impact the duration of action and may provide some ther‐
apeutic benefits.
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Table 2. Guide to AA Plasma Concentration
Interpretation

Pathophysiologic and
Pharmacologic Description

*AA Plasma
concentrations

Deficiency (Scurvy), lowest
plasma level – weakness,

tiredness, anemia, gingivitis, poor
wound healing, ecchymosis
(Intake of AA < 10 mg/d oral)

< 0.2 mg/dL (<=17 µM)
1236

*Dose-concentration
relationship altered by

physiologic stress

Insufficiency, low plasma level
(minimal reserves, also called
hypovitaminosis) Nonspecific

Symptoms i.e., fatigue, irritability)
<75 mg/d

0.2- 0.49 mg/dL (11-28 µM)
1,⁴,⁵,⁵,⁷,⁸

Nutritional plasma level
(dietary AA produces physiologic
concentrations) 5 to 9 servings of
fruits and vegetables or low oral
supplementation 100 - 200 mg/d

0.5-1.41 mg/dL (28 -80µM)
1,⁶,⁸.⁹,1⁰,11

Only the upper part of this
range is within RDA

intakes/levels.

Oral Moderate Supplementation
level (Preventive, risk reduction,

for low level stressors;
500 mg – 3,000 gm/d)

>1.42-1.97 mg/dL
(84-112µM) 11,12

Oral High Supplementation level
(Low Pharmacologic level)

Oral > 3 g/d
(i.e., 1.5 gm TID to 3 gm 6x d)

>2.0-3.9 mg/dL
(112-220 µM) 12,13

IntravenousModerate level
(Moderate Pharmacologic)

10-50 gm
(uM = micromolar to mM =

millimolar)

22.0 — 175 mg/dL,
(1.25-10 mM) 12,1⁴,1⁵,1⁶,1⁷,1⁸

Intravenous High level
(High Pharmacologic)

>50 gm intravenous dose
(over 100 gm may cause
physiologic saturation

and ADR's such as thirst)

194 - 528 mg/dL,
(11-30 mM) 12,1⁴,1⁵,1⁶,1⁷,1⁸
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CONCLUSION

In addition to the remarkable track safety record of intra‐
venous and oral AA, there are a range of favorable
physiological and pharmacological actions of AA in man‐
aging a variety of conditions.

In conclusion, AA is an essential nutrient responsible for an
immense variety of physiological processes. National sur‐
veys in the USA and other countries have reported that
40% of the population has inadequate ingestion of this
nutrient to meet the body’s basic demands, which is exac‐
erbated in physiologically stressful conditions Given these
the body’s needs are increased during physiologic stress
and a large proportion of the population is presumably
experienced transient or permanent AA insufficiency.

A vast body of research literature has demonstrated the
pharmacologic activity of AA (antimicrobial, sepsis, anti‐
cancer, and others) when given at high levels especially
intravenously. This notion that nutrients at higher concen‐
trations can have additional pleiotropic actions is the
essence of orthomolecular medicine and can be referred
to as orthomolecular pharmacology. The proposed guide
for plasma AA concentration can help the clinician to inter‐
pret the current condition of the patient and serve as a
clinical guide, especially when applying intravenous AA as
an adjunctive therapy.
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